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Abstract

This paper presents a model, which is capable to simulate the coarsening process observed during thermo-

mechanical treatment of binary tin±lead solders. Fourier transforms and spectral theory are used for the numerical
treatment of the thermo-elastic as well as of the di�usion problem encountered during phase separation in these
alloys. More speci®cally, the analysis is based exclusively on continuum theory and, ®rst, relies on the numerical

computation of the local stresses and strains in a representative volume element. Second, this information is used in
an extended di�usion equation to predict the local concentrations of the constituents of the solder. Besides the
classical driving forces for phase separation, as introduced by Fick and Cahn±Hilliard, this equation contains an
additional term which links the mechanical to the thermodynamical problem. It connects internal and external

stresses, strains, temperature, as well as concentrations and allows for a comprehensive study of the coarsening and
aging process. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Joining methods are critical for the reliable use of electronic packages. In particular, since the advent

of surface mount technology (SMT) the reliability and lifetime of solder joints has been one of the

paramount topics in the ®eld of modern microelectronic packaging technology (Lau and Rice, 1985).

The ®rst two pictures in Fig. 1 show a cross-sectional cut through the solder joint1 of a micro-resistor,

before and after thermal cycling between ÿ558C and +1258C according to military speci®cation Mil-

Std-883, method 1011. The third picture presents a cross-sectional cut through a solder ball of another
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microelectronic application, a ball grid array (BGA), after several thousand so-called power cycles. In
this particular case, the microelectronic chip in the BGA serves as a heat source and leads to accelerated
aging of the solder as follows.

The regions of di�erent shades of grey and black in the various solder joints indicate that the
originally ®ne mix between tin (Sn) and lead (Pb) is superseded by `island formation' of high lead and
tin concentrations. These form as a result of the separation of both phases, an aging process which is

Fig. 1. Aging of Sn±Pb solder joints used in SMT (Jendrny et al., 1997; Albrecht and Gamalski, 1996).
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known as `coarsening' (Ozmat, 1990, p. 959; Harris et al., 1991, p. 20; Pao, 1992, p. 559). More
speci®cally, coarsening in SnPb solders must be attributed to the combined e�ect of three mechanisms.

The ®rst mechanism is classical di�usion which initiates the process of coarsening and which can be
described mathematically by Fick's law (see, e.g., Rothman, 1984, p. 3). This process is particularly
active at temperatures beyond 0.58C of the homologous temperature of the solder which explains the
e�ectiveness of accelerated aging tests, such as the aforementioned power-cycling. In fact, ®nite element
studies have shown (Hauck et al., 1996) that power cycling can lead to local temperatures in the solder
balls which are in the order of 1508C and more which corresponds to homologous temperatures greater
than 0.98C.2

The second mechanism is surface tension which controls the number, steepness, orientation, and the
®nal shape of the interfaces within the coarsened structure. Mathematically speaking, this e�ect can be
assessed by an additional term in the di�usional ¯ux which was originally suggested by Cahn and
Hilliard (1958). For the outcome of the ®nal microstructure it is important to note that the size of the
surface tensions varies by several order of magnitudes depending on whether the interfaces are coherent,
semicoherent, or incoherent (Raghavan and Cohen, 1975, p. 77 ). Moreover, the size of the surface
tensions is also in¯uenced by temperature and, as it was emphasized before by Cahn and Hilliard
(1958), p. 259, it can vary in the di�erent directions of the crystal lattice. The latter will explain the
typical eutectic structure observed in SnPb solders.

Third, thermo-mechanical stresses will also lead and enforce coarsening of a Sn±Pb microstructure
(Seyyedi et al., 1991, p. 51; Hacke et al., 1997, p. 781; NyleÂ n et al., 1997, p. 890). Their contribution to
the di�usional ¯ux is based on eigenstrains, which, locally, are due to the di�erent thermal expansion
lattice parameters of the anisotropic phases, and, globally, to the mismatch of the various materials
involved in a microelectronics structure.

Consequently, as a result of the coarsening process, the overall material properties of the solder must
change over time. This will eventually have a detrimental e�ect on the mechanical stability of the joint.
For example, the creep behavior of a solder is directly linked to grain size (Darveaux et al., 1995, p.
397; Hacke et al., 1997), and the process of phase separation will lead to a decrease of the ¯ow stress
(Seyyedi et al., 1991, p. 51). The micro-morphology of the solder will also in¯uence the crack path
during the fracture process (Logsdon et al., 1990, p. 205). Moreover, for near-eutectic SnPb solder
bumps, which are attached to an interposer through several pads made of copper and/or nickel,
localized coarsening is accompanied by the formation of intermetallics in the highly stressed interfacial
areas which precedes cracking (see the interface regions in the micrographs of Fig. 1, Hwang and Lucey,
1993, p. 663; Flanders et al., 1997).

From a technological point of view it is important to identify the factors that result in coarsening in
solders. Once they are known and quanti®ed it can be determined how to minimize their in¯uence in
order to increase the lifetime and the reliability of a solder joint and, hence, the electronic component.
Eventually, it may also become possible to change these properties by suitable doping agents or external
stress conditions such that healing of the solder material is initiated. However, in order to identify the
factors quantitatively a realistic model, based on continuum theory, needs to be developed ®rst. The
development of this model and ®rst qualitative simulations of the coarsening phenomenon with realistic
material data for SnPb solders are the prime objectives of this paper.

However, in a second step, experiments must be carried out which allow the measurement of material
parameters to be used during quantitative numerical simulations. The development of such an

2 The homologous temperature is de®ned as the ratio between the current temperature and the melting temperature of the alloy,

i.e., 1838C in the case of a eutectic Sn±Pb solder.
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analytically and experimentally correlated simulation tool for the quantitative description of coarsening
in a binary alloy is the long-term goal of the authors.

2. The mathematical model

2.1. Assumptions and objectives

Consider a body, B, which consists of a binary alloy of Pb and Sn at a eutectic composition3 (see the
phase diagram shown in Fig. 2). This body is divided into Representative Volume Elements (RVEs)
which are characterized by material coordinates x � �x1,x2,x3� in space. In order to avoid additional

Fig. 2. The phase diagram of the binary alloy SnPb according to Callister (1997).

3 For simplicity this paper concentrates on the eutectic composition and the model will be geared toward the modeling of the

eutectic microstructure.
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complications the size of the RVE is such that it lies within one grain and grain boundaries need not to
be modeled. Within the RVE there are regions of two di�erent phases, the a-phase which is rich in lead,
and the b-phase which is rich in tin (cf., Fig. 2). The a-phase has cubic material symmetry and the b-
phase has tetragonal symmetry (i.e., the symmetry of their dominant elements, lead and tin,
respectively).

From the mathematical point of view, the ®nal objective of the model is to determine the strain ®elds,
eij�x,t�, and the ®eld of the concentration of the tin, c�x,t� � cSn�x,t�, for all points, x 2 B, and at all
times, t. With the exception of the Appendix A we will assume in this paper that the temperature
distribution, T(t ), within the body B is homogeneous and a known (`given') function of time. Moreover,
for a binary mixture only one concentration ®eld needs to be determined since, due to mass
conservation, the following identity holds:

cSn�x,t� � cPb�x,t� � 1: �2:1�

2.2. The mechanical aspects of the model

It will be assumed that mechanical equilibrium is much faster to achieve than thermodynamical (or
chemical) equilibrium. Consequently, the mechanical part of the problem or, in other words, the
solution for the strain ®elds is based on the equation for static equilibrium of forces, i.e.,

@sij
@xj
� 0, �2:2�

where the symbol sij denotes the stress tensor. In addition to these equations, kinematic conditions and
Hooke's law will be taken into account:

ekl � 1

2

�
@uk
@xl
� @ul
@xk

�
, sij � Cijkl

ÿ
ekl ÿ e�kl

�
, �2:3�

where ekl denotes the local total strains, e�kl are the `eigenstrains' (i.e., nonelastic strains, such as thermal
expansion, phase transformation, etc.; see Mura, 1987), and Cijkl is the sti�ness matrix. Initially, when
the SnPb-crystal develops from the melt, the eigenstrains originate as a consequence of the coherency of
the di�erent crystal lattices of the two phases. However, the simulation and study of the nucleation
phase is left to future research. In this work we concentrate on the case of an already existing incoherent
structure which will inevitably result since the lattice constants of the cubic a-phase and tetragonal b-
phase of SnPb solder are extremely di�erent. Then the eigenstrains result from di�erent thermal
expansion of the two phases and, therefore, we put:

e�kl�x,t� � akl�x,t� � �Tÿ TR �, akl�x,t� � y�x,t�aakl �
ÿ
1ÿ y�x,t��abkl, �2:4�

where TR is the reference temperature of the stress-free state which, in the present case, was chosen to
be the solidus temperature of the eutectic solder. The symbols aaij and abij are tensors of thermal
expansion coe�cients of the cubic a-phase and tetragonal b-phase, respectively:

aaij �
0@ aa 0 0
0 aa 0
0 0 aa

1A, abij �

0BBB@
ab1 0 0

0 ab1 0

0 0 ab3

1CCCA: �2:5�
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To a ®rst-order approximation the elements of these matrices are given by the thermal expansion
coe�cients of pure lead and tin. In order to account for higher order terms Vegard's law (see Massalski,
1965) or rules of mixtures could be used to relate them to the thermal expansion coe�cients of the pure
materials. However, in view of the uncertainty of the other material parameters involved in the model
this will not be done in this paper.

The shape function, y�x,t�, of Eq. (2.4) is de®ned by:

y�x,t� � cb ÿ c�x,t�
cb ÿ ca

�) y�x,t� �
�
0 if x 2 b
1 if x 2 a

, �2:6�

where cb and ca are the equilibrium concentrations of the a- and b-phase. For a given temperature the
equilibrium concentrations are constants, and they can be read o� from the phase diagram shown in
Fig. 2. Therefore, the eigenstrains are directly connected to the local (continuous) composition, c�x,t�, of
the alloy. The shape function is also used to characterize the spatial dependence of other material
parameters, such as the local sti�ness:

Cijkl�x,t� � y�x,t�C a
ijkl �

ÿ
1ÿ y�x,t��C b

ijkl, �2:7�

the tensor of surface tensions:

aij�x,t� � y�x,t�aaij �
ÿ
1ÿ y�x,t��abij, �2:8�

and the matrix of mobility coe�cients:

M�x,t� � y�x,t�Ma � ÿ1ÿ y�x,t��Mb: �2:9�

The indices a and b in these equations refer to properties of the a- and b-phase, respectively, which are
assumed to be constant and known material quantities. Speci®cally, for the sti�ness tensor, Voigt's
coe�cients, C a=b

ij , are preferably used in data handbooks. They are related to C a=b
ijkl as follows:

�2:10�

Initially, a suitable function of position will be assumed for c�x,t� (e.g., nuclei in form of localized tin-
rich regions), which, by virtue of Eqs. (2.4)±(2.6), provides an initial condition for the eigenstrains e�kl:
The resulting stresses and strains will then be computed from Eqs. (2.2) and (2.3). In the next subsection
it will be discussed how this can be achieved for the initial time as well as during the subsequent time
steps.
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2.3. Solution of the mechanical problem

Recently spectral methods or, more speci®cally, discrete Fourier transforms (DFT) have been used in
an extremely promising way to solve stress/strain problems in heterogeneous solids (e.g., Canuto et al.,
1988; Suquet, 1990; Moulinec and Suquet, 1994, 1998; Dreyer (1994); Dreyer et al., 1998; MuÈ ller, 1996,
1998a, 1998b; MuÈ ller and Neumann, 1998). Speci®cally we will consider the case that loads s0xx, s

0
xy, s

0
yy

are speci®ed along the periphery of the RVE (cf., Fig. 3, left) are speci®ed as follows:�
2pL

sxx dy�
�
2pL

sxy dy �
�
s0xx � s0xy

�
2pL,

�
2pL

syy dx�
�
2pL

sxy dx �
�
s0yy � s0xy

�
2pL, �2:11�

where sxy follows from the solution of Eqs. (2.2) and (2.3). Following MuÈ ller (1998a) we consider an
array of N points, x, in a physical space of dimension d, arranged equidistantly over a square unit cell
lattice of length L (see Fig. 3, right):

x � ha, a � �a1, . . . ,ad �, aj 2 f0,1, . . . ,Nÿ 1g, �j,d� 2 f1,2,3g, h � 2pL
N
: �2:12�

Let discrete ®eld variables, f �a�, be de®ned in each of these points. Then the discrete Fourier transform
for these variables can be obtained by summation:

f̂�s� � 1

Nd=2

XNÿ1
a1�0
� � �

XNÿ1
ad�0

f�a�exp

�
i2p

s � a
N

�
� Y

�
f�a�

�
: �2:13�

Fig. 3. Square RVE and its discretization in the two-dimensional case, N = 8.
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If periodicity conditions hold across the representative volume element, RVE:

f�a�Nr� � f�a�, r � �r1,:::,rd�, rj 2 Z �2:14�
the corresponding quantities f �a� in physical space can be obtained through Fourier's theorem provided
that f̂�s� is known:

f�a� � 1

Nd=2

XNÿ1
s1�0
� � �

XNÿ1
sd�0

f̂�s�exp

�
ÿ i

2p
N

s � a
�
: �2:15�

Note that all summations are ®nite and can be performed exactly, e.g., by fast Fourier transform. The
sums do not represent an approximation of continuous Fourier integrals. As in the continuous case, a
di�erentiation rule holds:

Y

 
@f�a�
@xj

!
� xj�sj �Y

ÿ
f�a�

��O�h2�, xj�sj � � ÿ
i

h
sin

�
h

L
sj

�
: �2:16�

This rule is an approximation of spatial di�erentiation by a central di�erence quotient and it is based on
the shift theorem which requires the periodicity conditions (2.14) to hold. Second derivatives can be
treated similarly:4

Y

 
@2f�a�
@x2

j

!
� xjj�sj �Y

ÿ
f�a�

��O�h2�, xjj�sj � �
2

h2

�
cos

�
h

L
sj

�
ÿ 1

�
,

Y

 
@2f�a�
@xi@xj

!
� xij�si,sj �Y

ÿ
f�a���O�h2�, xij�si,sj � � ÿ

1

h2
sin

�
h

L
si

�
sin

�
h

L
sj

�
, i 6� j: �2:17�

DFT will now be applied to Eqs. (2.2) and (2.3), i.e., to static, linear-elastic problems with small
deformations and to solve the resulting PDE of second order. To this end we make use of the equivalent
inclusion technique (EIT) which goes back to Eshelby (Mura, 1987). This method circumvents the
problem of the spatial dependence of the sti�ness matrix by introducing an auxiliary strain ®eld eHkl�a�
(Moulinec and Suquet, 1998; MuÈ ller, 1998a) and an auxiliary constant sti�ness matrix, C H

ijkl, as follows:

sij�a,t� � Cijkl�a,t�
ÿ
ekl�a,t� ÿ e�kl�a,t�

� � C H
ijkl

ÿ
ekl�a,t� ÿ e�kl�a,t� ÿ eHkl�a,t�

�
: �2:18�

If this is inserted into Eqs. (2.2) and (2.3) the following problem remains to be solved:

C H
ijkl

@2

@xj@xl
uk � C H

ijkl

@

@xj

ÿ
eHkl � e�kl

�
: �2:19�

Periodicity of all ®elds is assumed and by virtue of the di�erentiation theorems (2.16) and (2.17) this
system of PDEs is mapped onto a system of linear equations in Fourier space for which one formal
solution can be obtained as follows:

ekl�a,t� � Y ÿ1
h
Â

H

klopê
H
op

i
�a,t� � Y ÿ1

h
Â

H

klopê
�
op

i
�a,t� � e0kl, �2:20�

4 Some of the indices are underlined in order to indicate that no summation is implied.
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where compare Falk (1966) for the case of asimilar ``singularity'' at s � 0:

Â
H

ijkl �

8><>:
0, s � 0

1

2D

ÿ
xiNjs � xjNis

�
C H

srklxr, s 6� 0:
�2:21�

The symbols Njs and D are the discriminant and determinant of the following matrix:

Mik � C H
ijklxjl �) Mÿ1ik �

Nik

D
: �2:22�

They are cumbersome but known functions of the sti�ness C H
ijkl (which will soon be chosen suitably),

and of the Fourier transforms of the di�erence quotients (2.17) which, for an arbitrary degree of
anisotropy, are preferably determined by means of analytical software packages, such as Mathematica1.
In particular, for the cubic phase, the following concise relations can be used directly:

D � ÿmÿl� 2m� m 0
��xkk �2ÿÿl� m� m 0

�2
x11x22 � �l� m�2x212,

Nij � ÿ
hÿ
l� 2m� m 0

�
xkkdij ÿ �l� m�xij ÿ m 0dijklxkl

i
, �2:23�

where dij,dijkl denote Kronecker symbols and l, m and m 0 are LameÂ 's constants, respectively.

The choice Â
H

ijkl�s � 0� � 0 implies that we currently consider the case of mean strains, e0kl: In fact,
mean strains are de®ned by:

�eij � 1

Nd

XNÿ1
a1�0
� � �

XNÿ1
ad�0

eij�a�: �2:24�

On the other hand, the de®nition of Fourier transforms according to Eq. (2.13) leads to:

êij�0� � 1

�N�d=2
XNÿ1
s1�0
� � �

XNÿ1
sd�0

eij�a�: �2:25�

Mutual insertion of Eqs. (2.24) and (2.25) yields:

�eij � 1

�N�d=2
êij�0�, �2:26�

and since (cf. Eqs. (2.20) and (2.21)):

êij�0� � Â
H

ijkl�0�êHkl�0� � Â
H

ijkl�0�ê�kl�0� � e0ij � 0 � êHkl�0� � 0 � ê�kl�0� � e0ij � e0ij, �2:27�

it ®nally follows that:

�eij � e0ij: �2:28�

The solution shown in Eqs. (2.20) and (2.21) solves the original PDE and, as well shall see shortly, it
also enables us to take the boundary condition (2.11) into account. Next, we eliminate the auxiliary ®eld
êHop: To this end we insert Eqs. (2.7) and (2.20) into (2.18) to obtain:
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C H
ijkl

�
Y ÿ1

h
Â

H

klopê
H
op

i
�a,t� � Y ÿ1

h
Â

H

klopê
�
op

i
�a,t� � e0kl ÿ e�kl�a,t� ÿ eHkl�a,t�

�
�
�
C b

ijkl ÿ y�a,t�
h
C b

ijkl ÿ C a
ijkl

i��
Y ÿ1

h
Â

H

klopê
H
op

i
�a,t� � Y ÿ1

h
Â

H

klopê
�
op

i
�a,t� � e0kl ÿ e�kl�a,t�

�
: �2:29�

In what follows the `growth' of the softer a-phase in an initially uniform b-matrix will be studied. Then,
in order to guarantee convergence, the constant matrix C H

ijkl should be chosen as (cf., MuÈ ller, 1998a):

C H
ikjl � C b

ijkl, �2:30�

which results in:

C b
ijkle

H
kl�a,t� � y�a,t�

�
C b

ijkl ÿ C a
ijkl

��
Y ÿ1

h
Â

b
klopê

H
op

i
�a,t� � Y ÿ1

h
Â

b
klopê

�
op

i
�a,t� � e0kl ÿ e�kl�a,t�

�
: �2:31�

This is a functional equation for the unknown ®eld eHkl�a,t� which is solved in the standard Neumann
fashion:

e
�n�1�

H

kl
�a,t� � y�a,t�

ÿ
C b

�ÿ1
klrs

�
C b

rsmn ÿ C a
rsmn

� 
Y ÿ1

"
Â

b
mnop êop

�n�H
#
�a,t�

� Y ÿ1
h
Â

b
mnopê

�
op

i
�a,t� � e0mn ÿ e�mn�a,t�

!
,

�2:32�

where the 0th iteration strain ®eld, e
�0�

H
ij
, and e0ij are given by (i.e., the latter follows from the external

loads imposed on a homogeneous RVE, cf., Fig. 3):

e
�0�

H
ij
� 0, e0ij � �C ÿ1�

b
ijkls

0
kl: �2:33�

Y ÿ1 denotes the inverse discrete Fourier transform de®ned by Eqs. (2.13) and (2.14), and the symbols
Â

b
mnop can be computed from Â

H

mnop (see Eq. (2.21)) if C H
ijkl is substituted by C b

ijkl: In fact, EIT was
originally developed for the continuum and Eq. (2.32) is the discrete counterpart of the Neumann
iteration technique for the solution of a Fredholm integral equation for the continuous ®eld eHkl�x�: For
completeness, it should be pointed out that in the present situation, for a given external net stress s0ij,
Eq. (2.33) for the strain ®eld e0ij is also evaluated by using C b

ijkl:
It should be noted that the relations for the thermal expansion coe�cients, the sti�ness tensor, the

surface tensions, and for the mobility tensor shown in Eqs. (2.5) and (2.7)±(2.9) maintain their simple
form only if the coordinate systems of the RVE, xi, and of the crystallographic axes of the phases, x 0j ,
coincide. However, this will be the exception and in most cases both coordinate systems are linked to
each other by a transformation matrix, Oa=b

ij ,5 which is di�erent from unity:

xi � Oa=b
ij x 0j : �2:34�

Consequently,

aa=bij � Oa=b
ir Oa=b

js a 0 a=brs �2:35�

5 The su�x a=b indicates that both phases could still be oriented di�erently.
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and

C a=b
ijkl � Oa=b

ir Oa=b
js Oa=b

kt Oa=b
lu C 0 a=brstu, �2:36�

where the matrices C 0 a=brstu and a 0 a=brs have the form as indicated before in Eqs. (2.10) and (2.5),
respectively. Eqs. (2.35) and (2.36) can now be used to compute the local eigenstrains and sti�nesses
according to Eqs. (2.4) and (2.7), as well as the symbols Â

a=b
mnop according to Eqs. (2.21) and (2.22). It

should be pointed out that the symbolic computation of these symbols is extremely tedious, especially
for tetragonal symmetry. In fact, this became only feasible by using various features of the
Mathematica1 software package to create a reliable FORTRAN ®le.

To summarize this subsection it seems worth recalling that loading of the body is taken into account
in two ways: First, it can be due to internal eigenstrains, e�kl: In the present case, these will evolve as a
consequence of the di�erent thermal expansion coe�cients of the tin- and lead-rich phase.

Second, loading can also be imposed from outside by prescribing suitable mean averages for the
stresses, s0ij, along the boundary of the RVE: (see Eqs. (2.11) and (2.33)). Physically speaking, these are
due to the global thermal mismatch of the microelectronic structure and/or to direct mechanical
straining of the solder, e.g., by shear testing (see NyleÂ n et al., 1997, p. 891).

2.4. The thermodynamical aspects of the model

Once the local stresses and strains are known at a certain time, t, they will be used to compute the
evolvement of the distribution of concentrations, c, of during the next time-step, Dt: This follows from a
numerical solution of the di�usion equation:

r0
@c

@t
� @Ji
@xi
� 0, �2:37�

where r0 is the total mass density with respect to the reference con®guration, and Ji is the following
extended di�usion ¯ux:
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M being the (scalar) mobility factor which will be related to the mobility of the a- and b-phase as shown
in Eq. (2.9).

Moreover, c is the con®gurational part of the Gibbs' free energy density of the system, which will be
assumed in form of a suitable Landau polynomial (see below). A sketch of the derivation of Eqs. (2.37)
and (2.38) is presented in Appendix A.

Note that the ®rst term in the di�usion ¯ux leads to the classical di�usion equation as proposed by
Fick (e.g., Rothman, 1984, p. 3), whereas the second part contains extensions of the di�usion equation
as introduced by Cahn and Hilliard, aij being a matrix of surface tension related quantities (see Cahn
and Hilliard, 1958, and de Fontaine, 1975, or Hawick, 1991, Chapter 3, for a comprehensive summation
of the original results which is related to the surface tension coe�cients of the a- and b-phase as shown
in Eq. (2.8)).

Note that the di�usional ¯ux shown in Eq. (2.38) contains an additional term which characterize the
in¯uence of mechanical stresses on the di�usion process explicitly:
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As a result, the computed change in concentrations during the time Dt will lead to a change of the
micromorphology and, consequently, necessitates an update of the local stress/strain distribution in the
RVE by means of Eqs. (2.32) and (2.33). If this has been achieved, the next time-step can be considered,
etc. Some details of the numerical procedures involved will be presented in the next subsection.

In order to guarantee coexistence of both phases a and b the density of the Gibbs' free energy needs
to be a non-convex function of the concentrations, for example (see Cahn and Hilliard, 1958, p. 261;
Tsakalakos, 1985, p. 150):

c � c0

��
�ca ÿ c0 �2ÿ�cÿ c0 �2

�2
ÿb�cÿ c0 �

�
, c0 � 1

2

ÿ
ca � cb

�
, �2:40�

where c0 and b are temperature dependent coe�cients which need to be adjusted suitably (see Section
(3.1)), and ca, cb are the equilibrium concentrations which were mentioned in Section (2.4).

2.5. Some remarks on the numerical treatment of the extended di�usion equation

The extended di�usion equations (2.37) and (2.38) are mapped into discrete Fourier space and the
Fourier transforms of spatial di�erential quotients are replaced according to Eq. (2.17):
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To this end it was assumed that:

Ma �Mb �M: �2:42�
This was done mainly in view of the missing data regarding the mobility and di�usivity coe�cients of
both species. It is left to future research to make use of the additional possibilities Eq. (2.9) has to o�er.
A dimensionless time is introduced:

~t � t
Mc0

L2
� nD~t, n 2 N: �2:43�

The time derivative is approximated in the usual manner, and an implicit scheme is used for its
integration (cf., KuÈ pper and Masbaum, 1994, p. 1850):
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with dimensionless quantities:

~xjj�sj � � 2

�
N

2p

�2�
cos

�
2p
N

sj

�
ÿ 1

�
, ~xij�si,sj � � ÿ

�
N

2p

�2

sin

�
2p
N

si

�
sin

�
2p
N

sj

�
, i 6� j, �2:45�

~c � c
c0

, ~akl � akl
c0L

2
, ~skl � skl

c0

, ~Cklrs � Cijkl

c0

, ~xl � xl

L
: �2:46�

W. Dreyer, W.H. MuÈller / International Journal of Solids and Structures 37 (2000) 3841±38713852



2.6. A brief comparison with the literature

DFT techniques have been used before solving extended di�usion equations, such as (2.37) and (2.38).
Particularly noteworthy is the work of the school headed by Khachaturyan (see, e.g., Khachaturyan et
al., 1995; Chen et al., 1991; McCormack et al., 1992; Wang et al., 1991, 1993a, 1993b, 1994; Wang and
Khachaturyan, 1995, 1997), the papers of Nishimori and Onuki (1990); Li and Chen (1997) and Laberge
et al. (1997), and the work by Koyama, Miyazaki and co-authors (e.g., Takeuchi et al., 1990; Miyazaki
et al., 1991; Koyama et al., 1994, 1996; Koyama and Miyazaki, 1994, 1998; Mebed et al., 1997;
Miyazaki and Koyama, 1996, 1997).

Even though there is a certain resemblance between the solution procedures used therein and the one
outlined in Section (2.5), there are also fundamental di�erences, as follows:

. The physical concepts presented in the aforementioned papers are not based on the concepts of
continuum theory alone. Rather they rely heavily on a microscopic formalism, also referred to as the
stochastic ®eld approach, which requires the use of kinetic coe�cients together with atomic
interaction energies, and ¯uctuation potentials.

. A complete continuum mechanics solution for the stress and strain ®elds, i.e., of Eqs. (2.2) and (2.3),
is not performed. Rather the in¯uence of the mechanical stresses and strains are taken into account
indirectly. To this end the local elastic strain energy density is used (e.g., Li and Chen, 1997, Eq. (3);
Koyama and Miyazaki, 1998, Eq. (22)) which is then evaluated by means of the Green's function
solution shown in Eqs. (2.20) and (2.21). An average sti�ness C 0

ijkl is inserted there which, as it was
pointed out by Li and Chen (1997), p. 1273, is an e�ective medium approximation which is legitimate
provided the di�erences of the sti�nesses between the various phases are not too large. However, in
the present case such an assumption seems questionable since the ratio of Young's moduli for
(polycrystalline) tin and lead is roughly 3 : 1 (cf., Winter, 1998), and an iterative solution as shown in
Eqs. (2.32) and (2.33) seems more appropriate.

. In the recent work by Koyama and Miyazaki (1998), Eq. (23), the local variation in sti�ness is
accounted for very similarly to Eq. (2.7). The only di�erence is the use of another shape function as
the one shown in Eq. (2.6). If this di�erence is taken into account, and if one specializes to cubic
symmetry the two mechanical contributions to the di�usion ¯ux in Eqs. (2.38) and (2.39) are identical
with their expression for the strain energy contribution to the chemical potential, mstr, Eq. (26).
However, the expression for the mobility as suggested by Koyama and Miyazaki (1998), Eq. (7), is
clearly di�erent from the one shown Eq. (2.9). For lack of data it is di�cult to say how this di�erence
in¯uences the development of the microstructure. As it was mentioned before this aspect is left to
future research.

. Simulations with materials that show a higher degree of anisotropy than cubic symmetry have not been
reported by the aforementioned authors. As indicated before, some of their equations hold for cubic
materials only. Also, no attempt was made to study the case where the axes of the RVE or, in other
words, the orientation of the externally applied forces and the main crystallographic axes do not coincide.

3. Results and discussion

3.1. Choice of material constants

The thermal expansion coe�cients and the elasticity constants of the lead- and tin-rich phase were
approximated by the corresponding data for the pure elements (Lee and Raynor, 1955, p. 739;
Handbook of Chemistry and Physics, 1995, pp. 12±38, 12±40, 12±172):
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aa � 28:9� 10ÿ6 Kÿ1, ab1 � 16:7� 10ÿ6 Kÿ1, ab3 � 36:4� 10ÿ6 Kÿ1, �3:1�

C a
11 � 49:66 GPa, C a

12 � 42:31 GPa, C a
44 � 14:98 GPa, �3:2�

C b
11 � 75:29 GPa, C b

12 � 61:56 GPa, C b
13 � 44:00 GPa,

C b
33 � 95:52 GPa, C b

44 � 21:93 GPa, C b
66 � 23:36 GPa: �3:3�

The equilibrium concentrations of the a- and b-phase, ca and cb, can be read o� from the phase diagram
shown in Fig. 2. Note that they are not symmetrically arranged in the following sense:

ca 6� 1ÿ cb: �3:4�
Indeed, if the temperature of the eutectic is increased from ÿ408C to the melting temperature at
+1838C, the concentration ca shows a considerable variation between 1% and 18.3%, whereas cb

changes by less than 3%. Two considerably di�erent temperature levels have been selected:

Thigh � 1508C: ca � 11:88%, cb � 97:98%, �3:5�

Tlow � 208C: ca � 1:54%, cb � 99:86%: �3:6�
Note that if the ordinary Maxwell or common tangent construction (Raynor, 1965, p. 293) is applied to
the quadric chosen for the Gibbs' free energy in Eq. (2.37) the following result is obtained:

@c
@c
jc�ca � ÿc0b,

@c
@c
j
c�cb
� ÿc0b,

c�cb � ÿ c�ca �
cb ÿ ca

� ÿc0b, �3:7�

which is independent of the choice of ca and cb: In fact, the remaining factor, b, is irrelevant for the
temporal evolution of the concentration pro®le (cf., Eqs. (2.37) and (2.38)) and, therefore, it is
unnecessary to give it a value.

Reliable data for the various surface tension related quantities, aaij and abij, of Eq. (2.8) is di�cult to
obtain. They will depend on the crystallographic direction just as the surface tensions in single crystals
do (cf., Sundquist, 1964). To the best knowledge of the authors no data for the surface tensions of pure
lead and tin single crystals is available. Nevertheless, the following statements can be made:

. Due to the dominance of the lead the a-phase is cubic, and (cf., Cahn and Hilliard, 1958, p. 259) the
matrix aaij will be isotropic:

aaij � aadij: �3:8�

. Similarly, for the tetragonal b-phase, the matrix abij must be diagonal with respect to the main
crystallographic axes:

abij �

0BBB@
ab1 0 0

0 ab1 0

0 0 ab3

1CCCA
ij

: �3:9�

. The crystal lattice parameters for pure lead and pure tin are given by (Winter, 1998):

rPb
1 � rPb

2 � rPb
3 � 495:08 pm, rSn

1 � rSn
2 � 583:18 pm, rSn

3 � 318:19 pm: �3:10�
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They depend on the temperature, and for a ®rst-order approximation they can also be used to
characterize the lattice parameters of the a- and b-phase.6 These parameters can now be used to rank
the coe�cients, aa, ab1, a

b
1, with respect to each other. For that purpose arguments similar to Cahn

and Hilliard (1958), p. 262, are used to, ®rst, arrive at the following formulae:

aa � 1

3

X
n

Znr
2
nnn, ab1 �

1

2

X
n

 
Zn ÿ

XZn

a�1
cos2�Wa�

!
r2nnn, ab3 �

X
n

 XZn

a�1
cos2�Wa�

!
r2nnn, �3:11�

where n identi®es the coordination shell at a radius rn from a center point atom, Zn denotes the
coordination number, Wa is the azimuthal angle which leads to atom a, and:

nn�rn� � EAB�rn� ÿ 1

2

�
EAA�rn� � EBB�rn�

�
, �3:12�

where EAA, EBB and EAB are the inter-atomic potentials for the nth coordination shell which, for
simplicity, are supposed to depend only on the radial distance, rn: Second, again for simplicity, a two-
dimensional arrangement of atoms is considered. This is shown in Fig. 4 where a representative atom
(shaded in gray color) is surrounded by ®rst- and second-order neighbors (in black). Typical distances
relevant for lead and tin are also shown. The various sums of Eq. (3.11) are approximately evaluated
up to second neighbors to yield:
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Fig. 4. Two-dimensional arrangement of a cubic lattice of Pb-atoms (left) and a tetragonal lattice of Sn-atoms (right), see text.

6 For these they change slightly according to Vegard's law (see Predel, 1991±1997, p. 185; Lee and Raynor, 1955).
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Here an average value of 2rSn
1 has been used to assess atoms number 3 to 10 which are shown in

Fig. 4. Following Cahn and Hilliard (1958), p. 263, it is now assumed for further evaluation that:

nPb,nSn0 1

r6n
�3:14�

which leads to roughly:

aa:ab1:a
b
3 � 1:5:1:14: �3:15�

It should explicitly be pointed out that it is this di�erence in surface tension data which leads to the
formation of eutectic lamellae.

. In the very early stages of the phase separation the interfaces of the tin and lead rich regions will be
coherent. However, when the equilibrium concentrations are approached the huge di�erences in the
lattice constants between lead and tin (cf., Eq. (3.10)) will only permit incoherent interfaces to exist.
Raghavan and Cohen (1975), p. 77, report that the speci®c surface energy, g, of incoherent interfaces
is in the range of:

g10:5±1:5 N=m �3:16�
the maximum value of which was used for the simulations. In order to relate this information on
speci®c surface energy, g, to the coe�cients aa, ab1, a

b
3, of Eq. (3.15) the following de®nition is used

(see also McFadden et al., 1993, p. 2017, and Appendix A):
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where V is the volume surrounded by the interface O, the normal unit vector of which is given by Ni:
As customary, the surface integral will be neglected in a large crystal. To evaluate the remaining part
we put similarly to Eqs. (2.5) and (2.7)±(2.9):

k1ij � kbij ÿ
cb ÿ c

cb ÿ ca

�
kbij ÿ kaij

�
� ÿ

�
�kbij ÿ

cb ÿ c

cb ÿ ca

�
�kbij ÿ �kaij

��
c, �3:18�

where it was de®ned (see Eqs. (A35) and (A36)):

k �kaij �
1

2
ol2dij, k �kbij �

1

2
o

26664
l2a 0 0

0 l2a 0

0 0 l2b

37775: �3:19�

Consequently,

@k1ij
@xi
� ÿ @c

@xi

�
�kbij ÿ

cb ÿ ac

cb ÿ ca

�
�kbij ÿ �kaij

��
: �3:20�

For further numerical evaluation it is now assumed that the second part in the bracket can be
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neglected, i.e., the properties of the a- and b-phase are supposed to be similar, and, moreover,
isotropy is assumed (see Eq. (A35)):

@k1ij
@xi
� ÿa @c

@xi
dij: �3:21�

Hence, the following relation is obtained:

g � a

2O

�
V

�
@c

@xi

�2

dV: �3:22�

Next, it is assumed that the concentration gradient within the interface is linear and that equilibrium
concentrations, ca and cb, have been reached within and outside of V. Then the following relation is
easily derived:

a � 2g
Dx

cb ÿ ca
: �3:23�

For the numerical computations the width of the interface, Dx, was taken to be 50 atomic distances,
i.e., in view of Eq. (3.10) roughly 25 nm. Note that because of the form of the phase diagram shown
in Fig. 2, the di�erence cb ÿ ca and, consequently, the coe�cient a depends on temperature. The value
computed according to Eq. (3.23) was chosen for the coe�cient ab1 and the remaining two other
coe�cients were then related to it by means of Eq. (3.15).

3.2. Low vs. high temperature aging without mechanical e�ects

In this subsection all mechanical e�ects of the development of the microstructural development are
excluded. In other words, the last term in the equation for the di�usion ¯ux (2.38) is switched o�
completely. Figs. 6 and 7 show the temporal development of the microstructure of an originally
homogeneous composition of SnPb with six slight concentric disturbances/¯uctuations of the eutectic
concentration at 61.9%. The initial con®guration is shown in Fig. 5. All morphology sequences shown

Fig. 5. Initial condition (the picture on the right is a magni®ed version of the picture on the left).
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Fig. 6. Quenching from 1838C to 1508C, no mechanical contributions.

Fig. 7. Quenching from 1838C to 208C, no mechanical contributions.
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in this paper refer to 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0 and 10.0 time units. The time-step chosen was 10ÿ4

and the dimensions of the RVE are roughly 1.5 mm. This composition is quenched from 1838C down to
the high and low temperature levels of Eqs. (3.5) and (3.6), respectively. A thickening of the lamellae
which is characteristic to the eutectic composition is clearly visible. It also appears that the lamellae are
slightly thicker for the higher temperature.

To a certain degree this behavior can be linked to experimental observations. Fig. 8 shows
micrographs from the work of Harris et al. (1991). According to these the lamellae thicken at room
temperature as well as at elevated temperature levels. They are clearly thicker in the high temperature
case. Also, when compared to the numerical simulation, the characteristic dimensions, such as spacing
or thickness, di�er by an order of magnitude. This is clearly due to the insu�cient knowledge of the
material parameters which were used during the simulation. It should also be noted that the
experimental pictures exhibit all e�ects, in particular, the in¯uence of thermo-mechanical stresses.
Moreover, an experiment is always three-dimensional which might also explain some of the
discrepancies.

However, it can clearly be stated that the development of lamellae in the numerical simulation is due
to the use of an anisotropic surface tension according to Eq. (3.15). If the same factor 1.5 is used for all
directions and all phases, the microstructural development is clearly more isotropic as shown in the
sequence of Fig. 9.

The sequence in Fig. 10 simulates the e�ect of thermal cycling on SnPb solder. The two rows show
what happens if the temperature is changed from 208C to 1508C (where the microstructure of the last

Fig. 8. Coarsening in a eutectic SnPb solder, top row: e�ect of room temperature aging after (a) 2 hours, (b) 17 days, and (c) 63

days after solidi®cation; bottom row: (a) immediately after solidi®cation, (b) after 3 hours at 1258C and (c) 300 hours at 1258C.
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Fig. 9. Quenching from 1838C to 208C, no mechanical contributions, isotropic surface tension.

Fig. 10. Quenching from 208C to 1508C, no mechanical contributions.
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plot from Fig. 7 has been used as the initial condition). Obviously an increase in temperature leads to a
further coarsening of the lamellae which, as further simulations show, seems to irreversibly remain and
even increases slightly after cooling to the original starting point. However, this might depend on the
duration of the hold time, and it is certainly also a�ected by the presence of external loads, as will be
shown in the next subsection.

3.3. Low vs. high temperature aging with mechanical e�ects

The sequence in Fig. 11 is the same as in Fig. 6 but with thermal stresses. No external loads were
applied. The di�erence between them is not very large. The lamellae in Fig. 11 appear slightly thicker.
Whether this means that the chosen set of material parameters for the thermal stresses is incorrect and,
if so, in which way it has to be corrected, or how the model must be modi®ed is hard to decide since the
thermal mismatch between the phases cannot be eliminated during an experiment. A possible way of
how to get a better grip at this problem is to run aging experiments with other types of solders the
phases of which should have di�erent thermal expansion as well as sti�nesses. If the same type of
thermal stress model would then be applied to describe their coarsening there is hope that by a relative
comparison a decision could be made. It should also be mentioned that even though additional strain
gradient terms are listed in the Appendix A they were, up to now, not considered in the simulations.
These will be closer examined in a forthcoming paper by the authors.

Fig. 12 presents a sequence of simulated micrographs where in addition to the thermal loads an
additional external load of 5c0 has been applied in horizontal direction. For binary alloys c0 is typically
in the order of 100 MPa. Hence, absolutely speaking, the load could be as high as 500 MPa which could
not be supported by a SnPb solder. Indeed, further experimental research seems necessary to clarify this
issue. However, for the time being the simulation shows that, provided they are su�ciently high,
external stresses have an in¯uence on the development of the microstructure of SnPb solder. In the

Fig. 11. Quenching from 1838C to 1508C, thermal stresses, no external loads.
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Fig. 12. Quenching from 1838C to 1508C, thermal stresses, external load 5c0 in horizontal direction.

Fig. 13. Eutectic structure at an angle of 308 with respect to the main crystallographic axes.
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present case they tend to thicken and misalign the lamellae at certain points. A certain delay in the
evolution of a regular lamella structure can also be observed.

3.4. Misalignment with respect to the main crystallographic axes

The sequence of Fig. 13 is presented to show that the presented method is capable to simulate a
eutectic SnPb lamella-structures which is not parallel to the main crystallographic axes. In fact, it should
be possible to model di�erently oriented grain regions. However, in view of the insu�cient knowledge
regarding many material parameters this should become a second step toward the perfection of the
modeling of solders.

4. Conclusions

The following issues were discussed in this paper:

. A purely continuum model can be devised and used to describe phase separation processes on a
micro-morphological scale that are driven by di�usion through temperature, surface tensions, as well
as local thermo-mechanical stresses and strains.

. This model has been successfully used for a qualitative modeling of the phase separation and
coarsening process in binary eutectic SnPb solders that are subjected to change in temperature and
external as well as internal mechanical stresses.

. Arguments on the atomic scale can be used to gain additional information on material quantities such
as the relative ranking of the components of the tension of surface tensions.

. The entropy principle can be used, together with atomistic arguments, to rationally derive the
appropriate expressions for the stress-coupled di�usion ¯ux.

. Discrete Fourier transforms can most e�ectively be used to solve mechanical as well the di�usion
problems encountered during changes of micro-morphology. The corresponding theory was outlined
and applied to the case of eutectic SnPb solders.
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Appendix A. A modicum of thermodynamics

In this paper the following ®eld variables are of primary interest:
motion:

xi � ~xi�Xk,t�, i,j 2 f1,2,3g, �A1�
the concentrations of all constituents of the mixture:
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cA � ~rA0 �Xk,t�
~r0�Xk,t� , �A2�

the temperature:

T � ~T�Xk,t�: �A3�
The symbols Xk indicate the material coordinates of a continuum particle, t denotes the time, the
subscript A identi®es the constituent, and rA0 and r0 are the mass densities with respect to the reference
con®guration of constituent A and of the total mass, respectively. The following relations hold for the
current total mass density, r, and for the current partial mass densities, rA (MuÈ ller, 1985, p. 61, p. 71):

r � r0
detF

, r �
X
A

rA, �A4�

where F denotes the deformation gradient:

Fij � @ ~xi
@Xj

: �A5�

Sometimes it happens that the solid in the reference con®guration consists already of two phases, a and
b: In this case we write:

r0 � rb0 ÿ
�
rb0 ÿ ra0

�
~y�Xk,t�, �A6�

with:

~y�Xk,t� � cb ÿ ~c�Xk,t�
cb ÿ ca

: �A7�

Within this section on thermodynamics the right Cauchy±Green tensor, Cij, is used as a general strain
measure instead of the in®nitesimal strain, eij:

Cij � FkiFkj11� 2eij for jeijj: �A8�
The solution for the ®eld variables is based on the balance equations for the concentration, c:7

r0 _c� @Jk
@Xk
� 0, �A9�

momentum:

r0 _vi ÿ @tik
@Xk
� 0, �A10�

and for internal energy, u:

r0 _u� @Qk

@Xk
� tik

@vi

@Xk
� 1

2
Tij

_Cij: �A11�

7 For simplicity a binary mixture with no chemical reactions was assumed and the index A is omitted from now on.
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In these equations dots refer to material time derivatives, Jk denotes the di�usion ¯ux, tik and Tij are the
®rst and second Piola±Kirchho� stress tensors, respectively, and Qk is the material heat ¯ux (MuÈ ller,
1985, p. 77). If the di�erences between the current and the reference con®guration are ignored, as it is
customary for small deformations and as it was done during the simulations presented in this paper,
there is no di�erence between tik and Tij, and both tensors can be approximated by the Cauchy stress
tensor, sij:

Note that in the simulations presented in this paper the acceleration terms, r0 _vi, in the balance of
momentum were neglected and the balance of internal energy was completely ignored since the
temperature ®eld was prescribed as constant and homogeneous throughout the solder.

The balance equations become ®eld equations if the quantities Ji, Tij (or tij), u, and Qi are related to
the variables in a material-dependent manner by constitutive equations. Restrictions for such equations
are imposed by the local inequality for the entropy, s, which reads (MuÈ ller, 1985, p. 168):

r0 _s� @fk

@Xk
� Sr0, �A12�

where fk is the entropy ¯ux and S denotes the (positive) entropy production density which are also
constitutive quantities, in the same manner as Ji, etc.

Note that this inequality holds exclusively for solutions of the ®eld equations. These constraints are
taken into account in the famous lemma by I-Shih Liu and MuÈ ller (see MuÈ ller, 1985, p. 167) which
allows for a straightforward derivation of all the restrictions imposed by the entropy principle on the
constitutive relations. It states that if the entropy inequality (A12) holds only for solutions of the ®eld
equations then:

r0 _s� @fk

@Xk
ÿ Lc

�
r0 _c� @Jk

@Xk

�
ÿ Lv

i

�
r0 _vi ÿ @ tik

@Xk

�
ÿ Lu

�
r0 _u� @Qk

@Xk
ÿ 1

2
Tij

_Cij

�
r0 �A13�

must hold for arbitrary ®elds of concentration, motion, and temperature. The symbols Lc, Lv
i , L

u are
Lagrange multipliers which may depend on all independent variables including their derivatives. The
inequality must now be exploited in order to arrive at reduced, preferably explicit, forms for u, Jk, Tij,
Qk in terms of the ®elds c, C, T, and their derivatives.

The general exploitation of Eq. (A13) will be presented in another paper by the authors. It turns out
that the e�ort during this exploitation can be reduced considerably if it is assumed, motivated by
experience, that:

Lu � 1

T
> 0: �A14�

Motivated by arguments from statistical mechanics (Cahn and Hilliard, 1958, p. 262) the speci®c free
energy, c � uÿ Ts, of the binary alloy is a known function of the following variables:

c � ~c

�
c,
@c

@Xk
,
@2c

@Xk@Xs
,Cij,

@Cij

@Xk
,
@2Cij

@Xk@Xs
,T

�
: �A15�

Consequently, the inequality is linear with respect to Çvi and, therefore:

Lv
i � 0 �A16�

must hold since otherwise the inequality could easily be violated. Insertion of Eqs. (A14)±(A16) into Eq.
(A13) and performing the di�erentiations yields:
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r0
Lu

�
s� @c

@T

�
_L
u ÿ r0L

u

�
@c
@c
� Lc

Lu

�
_cÿ r0L

u

�
@c
@Cij
ÿ 1

2r0
Tij

�
_Cij ÿ r0L

u @c
@�@c=@Xk �

�
@c

@Xk

�
Ç

ÿ r0L
u @c
@
ÿ
@Cij=@Xk

��@Cij

@Xk

�
Ç ÿ r0L

u @c
@
ÿ
@2c=@Xk@Xs

�� @2c

@Xk@Xs

�
Ç

ÿ r0L
u @c
@
ÿ
@2Cij=@Xk@Xs

�� @2Cij

@Xk@Xs

�
Ç� @f

0
k

@Xk
�Qk

@Lu

@Xk
� Jk

@L
@Xk

r0,

�A17�

with the de®nition:

f 0k � fk ÿ LuQk ÿ LcJk: �A18�

With the same kind of argument as above the linearity in _L
u
implies:

s � ÿ@c
@T
: �A19�

If the ¯ux f 0k is supposed to depend on the same variables as the free energy and all the other
constitutive quantities then it can easily be shown that the free energy could only depend on c, Cij,
and T and not on their derivatives. On the other hand, it is known from statistical mechanics that
such a dependence exists. The simplest way to achieve consistency with the second law is to assume
that:

f 0k � jk _c� jkij
_Cij � jks

�
@c

@Xs

�
Ç� jkijs

�
@Cij

@Xs

�
Ç
, �A20�

where, in consistency with Eq. (A15), all coe�cients j may show a functional dependence as follows:

j � ~j

�
c,
@c

@Xk
,
@2c

@Xk@Xs
,Cij,

@Cij

@Xk
,
@2Cij

@Xk@Xs
,T

�
: �A21�

If Eq. (A20) is now inserted into Eq. (A17) the following result is obtained:8

ÿr0Lu

�
@c
@c
� Lc

Lu ÿ
1

r0L
u

@jk

@Xk

�
_cÿ r0L

u

 
@c
@Cij
ÿ 1

2r0
Tij ÿ 1

r0L
u

@jkij

@Xk

!
_Cij

�
�
jk �

@jks

@Xk
ÿ r0L

u @c
@�@c=@Xs �

��
@c

@Xs

�
Ç�

 
jsij �

@jkijs

@Xk
ÿ r0L

u @c
@
ÿ
@Cij=@Xs

�!�@Cij

@Xs

�
Ç

�
 
jks ÿ r0L

u @c
@
ÿ
@ 2c=@Xk@Xs

�!� @2c

@Xk@Xs

�
Ç�

 
jkijs ÿ r0L

u @c
@
ÿ
@ 2Cij=@Xk@Xs

�!� @2Cij

@Xk@Xs

�
Ç

�Qk
@Lu

@Xk
� Jk

@Lc

@Xk
r0:

�A22�

8 Because of their independence material time derivatives and spatial derivatives can simply be interchanged. This explains why a

Lagrangian formulation was used.
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The inequality (A22) is linear in _c, _Cij, � @ c@Xs
�Ç, � @Cij

@Xs
�Ç and, following the same line of arguments as above,

it follows that:

Lc � ÿ 1

T

@c
@c
� 1

r0

@js

@Xs
, �A23�

Tij � 2r0
@c
@Cij
ÿ 2T

@jsij

@Xs
, �A24�

js � ÿ
@jks

@Xk
� r0

T

@c
@ �@c=@Xs � , �A25�

jks �
r0
T

@c
@
ÿ
@2c=@Xk@Xs

� , �A26�

jkij � ÿ
@jkijs

@Xk
� r0

T

@c
@
ÿ
@Cij=@Xs

� , �A27�

jkijs �
r0
T

@c
@
ÿ
@2Cij=@Xk@Xs

� : �A28�

There remains the residual inequality:

Qk
@Lu

@Xk
� Jk

@Lc

@Xk
r0: �A29�

If coupling between heat and di�usion is ignored the simplest way to satisfy Eq. (A29) is given by the
choice:

Qi � ÿkik @T
@Xk

, �A30a�

Ji � r0MikT
@Lc

@Xk
, �A30b�

with two positive de®nite matrices, one for the thermal conduction coe�cients, kik, and one for the
mobility coe�cients, Mik: After elimination of jk, jks, jkij, and jkijs it follows that:

Lc � ÿ 1

T

@c
@c
� 1

T

@

@Xk

�
@c

@ �@c=@Xk �
�
� 1

r0

@c
@�@c=@Xk �

@

@Xk

�
r0
T

�

ÿ 1

T

@2

@Xk@Xs

 
@c

@
ÿ
@2c=@Xk@Xs

�!ÿ 1

r0

@c
@
ÿ
@2c=@Xk@Xs

� @2

@Xk@Xs

�
r0
T

�
, �A31�
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Tij � 2r0
@c
@Cij
ÿ 2r0

@

@Xk

 
@c

@
ÿ
@Cij=@Xk

�!ÿ T
@c

@
ÿ
@Cij=@Xk

� @

@Xk

�
r0
T

�

� 2r0
@2

@Xk@Xs

 
@c

@
ÿ
@2Cij=@Xk@Xs

�!� 2T
@c

@
ÿ
@2Cij=@Xk@Xs

� @2

@Xk@Xs

�
r0
T

�
: �A32�

Thus, the di�usion ¯ux as well as the stress, which are the quantities of primary interest in this paper,
are reduced to derivatives of the free energy alone. For the simulations discussed in this paper Eqs.
(A30b), (A31), and (A32) are the most important results of this section on thermodynamics. The
reference con®guration is often identi®ed with the melt. For that choice the various r0-terms in Eqs.
(A31) and (A32) drop out if, in addition, a homogeneous temperature distribution is assumed.

Following the statistical arguments present on p. 263 of the paper by Cahn and Hilliard (1958), the
following form of the speci®c free energy can be established if coupling between strain and
concentrations on the micro-scale is ignored:

c � c 0 � k1ij
@2c

@Xi@Xj
� 1

2
k2ij
@c

@Xi

@c

@Xj
: �A33�

In here c 0 is the con®gurational part of the free energy, which still includes strain (`elastic') energy, and
the coe�cients k1ij and k2ij are given by:

k2ij � 0, �A34�

k1ij � adij, a � ÿ1
2
ol2c �for cubic crystals�, �A35�

and:

k1ij �
0@ a 0 0
0 a 0
0 0 b

1A, a � ÿ1
2
ol2ac, b � ÿ

1

2
ol2bc �for tetragonal crystals�, �A36�

where:

o �
X
n

Znnn, nn � EAB ÿ 1

2
�EAA � EBB �, l2 � 1

3o

X
n

Znr
2
nnn, �A37�

l2a �
1

2o

X
n

 
Zn ÿ

XZn

a�1
cos2�Wa �

!
r2nnn, l2b �

1

o

X
n

 XZn

a�1
cos2�Wa�

!
r2nnn: �A38�

Moreover, Zn is the coordination number of the nth coordination shell at a radius rn from a reference
atom, EAA, EBB, and EAB denote the pairwise interaction potentials of a binary alloy, and Wa is the
azimuthal angle which starts from the tetragonal axis. If the temperature within the alloy is
homogeneous and if the reference con®guration is chosen to be the one of the melt, insertion of Eq.
(A33) into Eq. (A34) leads to the following result for the di�usion ¯ux of Eq. (A30b):

Ji � ÿr0Mij
@

@Xj

�
@c 0

@c
� @k

1
rs

@c

@2c

@Xr@Xs
� @2k1rs
@Xr@Xs

�
� ÿr0Mij

@

@Xj

�
@c 0

@c
ÿ ars

@2c

@Xr@Xs

�
, �A39�
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where

aij � ol2dij �for cubic crystals�, �A40�
and

aij � o

0BBB@
l2a 0 0

0 l2a 0

0 0 l2b

1CCCA �for tetragonal crystals�: �A41�

In the simulations presented in this paper the contribution of strain gradients was neglected. Thus, the
con®gurational part of the free energy, c 0, is additively split into a strain free con®gurational part, c0,
and another part, cdef , which contains the free energy stored due to the deformation, Cij:

c 0 � ~c0�c� � ~cdef

ÿ
c,Cij

�
: �A42�

For a linear elastic body which is subjected to small deformations we write:

cdef �
1

2

ÿ
eij ÿ e�ij�c�

�
Cijkl�c�

ÿ
ekl ÿ e�kl�c�

�
, where e�kl�c� � akl�c�DT, �A43�

which, together with Eq. (A39), explains the form of the di�usion ¯ux shown in Eq. (2.38).
Experiments on solder materials indicate that the stress ®elds have an observable in¯uence on

di�usion. However, if the in¯uence on stresses is described in terms of (A43) extremely high stresses are
necessary to simulate this in¯uence. In an upcoming publication by the authors it is intended to also
consider the in¯uence of deformation gradients.
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